Use and Breeding of Forage Grasses in the North Central USA

Michael Casler USDA, U.S. Dairy Forage Research Center & Dan Undersander University of Wisconsin, Agronomy Department

Conservation/Hay/Silage

- Timothy & Smooth brome long-time standards for hay; many old hayfields still around; used for CRP, but not much seed sales otherwise.
- Orchardgrass often used in mixtures with alfalfa; sometimes mixed with other grasses.
- **Reed canarygrass** mostly "invaded" wetlands.
- Quackgrass it's everywhere; very naturalized.
- **Tall fescue** some old KY-31 types and some new types; not very common.
- Ryegrasses both perennial and Italian types; mostly emergency forage.

Pasture for Dairy, Beef, or Sheep

- **Reed canarygrass** a few pastures planted to low-alkaloid types.
- **Tall fescue** soft-leaf types; endophyte is not needed for winter survival.
- **Perennial ryegrass** niche usage in protected areas; mostly in mixtures.
- Meadow fescue close relative of TF; introduced from Europe; demand >>> supply.
- Unimproved "natural" pasture quackgrass, bluegrass, etc.; mostly unfertilized.

Forage Grass Breeding

- Development of <u>meadow fescue</u> as a "new" pasture crop. It's not really new, because it was very popular before the discovery of tall fescue. When KY-31 was released in 1953, meadow fescue completely disappeared within 7 years.
- Development of <u>non-flowering orchardgrass</u> for grazing. Most commercial orchardgrass is undesirable for grazing due to early and profuse flowering. Our goal is to produce a cultivar without flowering stems in the central USA.

Project Timelines

- 1963 First germplasm discovery (A.W. Hovin).
- 1993 to 2015 Three generations of tandem selection
 - Seed production and disease resistance in the Willamette Valley of Oregon (Reed Barker, USDA & Devesh Singh, Barenbrug USA)
 - Forage production and sparse flowering in Wisconsin
- 2006 to 2011 Proof of concept trials
- 2016 to 2017 "Put up or shut up time"

Infrequent-harvest Means

Heading	Panicle	Cut-1	Regr.	Total
Date	Density	Yield	Yield	Yield
May	#/m ²	Mg/ha	Mg/ha	Mg/ha
30	53	3.36	4.86	8.17
29	56	3.38	4.66	7.99
30	74	3.67	4.88	8.48
24	128	4.54	5.28	9.75
26	168	4.89	4.97	9.80
26	128	4.24	4.90	9.08
8	-57	-24	-5	-14
1	13	0.26	0.36	0.41
	Heading Date Date May 30 29 30 29 30 24 26 8 1	Heading Panicle Date Density May #/m ² 30 53 29 56 30 74 24 128 26 168 26 128 8 -57 1 13	Heading DatePanicle DensityCut-1DateDensityYieldMay#/m²Mg/ha30533.3629563.3830743.67241284.54261684.89261284.248-57-241130.26	Heading DatePanicle DensityCut-1 YieldRegr. YieldMay#/m2Mg/haMg/ha30533.364.8629563.384.6630743.674.88241284.545.28261684.894.97261284.244.901130.260.36

Frequent-harvest Means

Cultivar	Cut-1 Yield	Regrowth yield	Total Yield
	Mg/ha	Mg/ha	Mg/ha
Sparse #1	1.44	5.82	7.25
Sparse #2	1.35	5.74	7.09
Sparse #3	1.51	6.24	7.75
Benchmark	2.17	6.92	9.09
Albert	2.11	6.39	8.51
lcon	2.00	6.27	8.27
% Change	-32	-9	-15
LSD(0.01)	0.25	0.48	0.54

Forage Quality Traits

	СР	NDF	NDFD	IVDMD
	g/kg	g/kg	g/kg	g/kg
First harvest				
Normal	118	607	597	760
Sparse	130	593	616	777
% Change	10	-2	3	2
LSD(0.01)	6	8	13	11
Regrowth				
Normal	147	581	644	795
Sparse	152	585	635	788
% Change	4	1	-2	-1
LSD(0.01)	NS	NS	NS	NS

Charles Opitz Farm: Remnant Oak Savanna in 1990

First documentation of meadow fescue since the 1950s DNA marker tests to identify the unknown species Collection and agronomic evaluations to follow

European Meadow Fescue: Post-Glacial Range Expansion: ~11,000 yrs ago

At least four introduction events are responsible for immigration of meadow fescue into the Upper Mississippi Driftless Region.

Meadow Fescue Endophyte

- Fungal endophyte that lives in stems, leaf sheaths, and seeds.
- Mutualistic relationship
 - Host plant provides water, nutrients, & structure
 - What does the endophyte do for the host?
- Sample of 31 farms: 82% infection rate!

Agronomic Performance of 'Hidden Valley' Meadow Fescue

Cultivar and Species	Wisconsin Forage Yield	New York Forage Yield	Wisc. in vitro NDFd	NY in vitro NDFd
	Mg/ha	Mg/ha	%	%
Orchardgrass	6.51	-	67.8	-
Tall Fescue	7.04	10.67	67.7	71.6
European MF	6.26	9.81	73.0	73.0
Hidden Valley MF	6.43	10.14	74.0	73.5
LSD(0.05)	0.12	0.35	0.8	1.0
HVMF (% Change)	-8%	-5%	+9%	+3%

Meadow Fescue Cultivars

- Hidden Valley (2014) public release seed multiplication from the Opitz farm.
- Azov (2015) public release strain cross of selections made from plant introductions collected on the Azov peninsula on the Black Sea.
- "Unnamed" cultivar (2017) Barenbrug USA selection based on seed production and rust resistance in Oregon, combined with high yield and rust resistance in Wisconsin.

Collaborator Acknowledgements

- Dan Undersander
- Geoffrey Brink
- Jerry Cherney
- Edzard van Santen
- Yousef Papadopoulos
- Reed Barker
- Richard Johnson
- Shabtai Bittman
- Russell Mathison
- Doo-Hong Min
- Joseph Robins
- Surya Acharya
- Stephen Bowley
- Bruce Coulman
- Raynald Drapeau
- Nancy Ehlke

- Marvin Hall
- Richard Leep
- Réal Michaud
- John Rowsell
- Glenn Shewmaker
- Chris Teutsch
- Devesh Singh
- Michael Humphreys
- Toshihiko Yamada
- Ken-ichi Tamura
- Nick Ellison
- Charles Opitz
- Randy Jackson
- David Duncan

QUESTIONS?

hat as a line and a star and a